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Abstract
While programming languages traditionally lean towards functions, query languages are often
relational in character. Taking the relations language of Harkes and Visser as a starting point, I
explore how the functional paradigm, represented by the lambda calculus, can be extended to form
the basis of a relational language. It turns out that a straightforward extension with strings of terms
not only supports surprisingly many features of the relations language, but also opens it up for
higher-order relations, one prominent feature the relations language does not offer.
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1 Introduction

At 2014’s instalment of the Software Language Engineering (SLE) conference, Eelco Visser
and his then PhD student Daco Harkes presented their relations language [1], a language
designed for querying the object graphs that represent the data of various web-based
information systems [2]. The language features first-class, n-ary, bidirectional relations
between attributed objects and offers concise path expressions (using the usual dot notation;
e.g., x.children.age) for convenient querying and navigation. To harden the language
with static guarantees, the places of relations are constrained not only by types, but also by
so-called native multiplicities, which abstract from the number of objects other objects may
relate to in each place, and which are said to be orthogonal to types [1, 2].

To grant some generality in query expressions, the relations language defines an arithmetic
sublanguage whose operators accept arbitrarily many operands in each place. For instance,
addition can handle multiple numbers in the places of both summands, and even no numbers
(in other languages represented by a null value). This is expressed by (big-step) evaluation
rules of the kind

[Add]
e1 ⇓ V1 e2 ⇓ V2

e1 ⊕ e2 ⇓ {| v1 + v2 | v1 ∈ V1, v2 ∈ V2 |}
,

in which V1 and V2 are (flat) bags (here delimited by braces {| and |}) and which means that
if e1 evaluates to {| 1, 2 |} and e2 to {| 3, 4 |}, then e1 ⊕ e2 evaluates to {| 4, 5, 5, 6 |}. Multiple
numbers naturally result from accessing numeric attributes (such as age) on multiple objects
(as they may result from query expressions such as x.children) in one expression (e.g.,
x.children.age). Note that since multiplicity is not encoded in type (the two are thought to
be orthogonal), the type system of the relations language grants addition of pairs of multiple
numbers without further measures (such as coercions). And yet, these kinds of additions
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appear to be of little use in a query language1, unless multiplicities are constrained to “zero or
one” (multiplicity ? in the relations language), in which case it amounts to adding under the
conditions of an Optional type [1, 2]. For instance, if e1 evaluates to {| 1 |} (corresponding to
Some 1) and e2 to {| |} (corresponding to None), then, by above rule Add, e1 ⊕ e2 evaluates
to {| |}. Having the semantics of Optional for free is certainly a commendable feature of the
relations language.

While adding multiple numbers through Add appears to be of little use in querying,
aggregating multiple numbers is certainly central. This is also acknowledged by the relations
language, which introduces special aggregation operations for this purpose. Evaluation of
these operations is defined through pairs of rules like

[Sum]
e ⇓ {| v1, . . . , vn |} n ≥ 1

sum(e) ⇓ {| Σn
i=1vi |}

[Sum0]
e ⇓ {| |}

sum(e) ⇓ {| 0 |}
.

Note that while Add distributes addition over its multiple operands and collects the results,
Sum must treat the multiple as a whole.

While the relations language is very general in its coverage of arithmetic (and logical)
operations (see, e.g., [6] for a more constrained approach), it is somewhat less so in other
respects. Specifically, even though relations are first-class, it does not feature higher-order
relations (relations of relations). Like higher-order functions, higher-order relations would
not only let users define their own operations, but would also allow the representation of
higher-degree (n-ary) relations as nested binary relations (in analogy to the currying of
functions), thereby increasing the expressiveness of the language while at the same time
reducing its size.

With this tribute to Eelco Visser’s work, I aim to provide a common basis for the core
constructs of the relations language, navigation of relations and computing with multiple
numbers. I do this by extending the lambda calculus (LC) with strings of elementary terms
and values. By associating different multiplicities (in this work called numbers, alluding to
the grammatical category number with values singular and plural [6]) with strings, I not
only show that the resulting calculus, which I have pretentiously dubbed “simply numbered
lambda calculus” (SNLC), has interesting safety properties, but also shed new light on the
relation of typing and numbering which, when moving to higher-order functions (or relations),
appear to be parallel instead of orthogonal as previously thought: specifically, while number
and type may be independent, the structure of the here introduced number specifiers parallels
that of function types.

2 Extending the Lambda Calculus with Strings of Terms

Rather than using lists (which can be encoded in the pure LC, but lead to a polymorphic
typing discipline [3]) to represent multiples, I will extend the LC with strings. Compared to
other monoids [7], strings have the advantage of being purely syntactical (with concatenation
as the monoid operation); unlike lists, strings are inherently flat (there are no strings of
strings; Section 5 will spell out what this means).

1 see [7] for a discussion
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2.1 Syntax
The syntax of my extended LC has elementary terms, e, and strings of elementary terms, t,
which are terms, too:

t ::= e

e ::= x | λx . t | t t

To spell out a string e, I write e1· . . . ·en instead of e1 . . . en; I do so to distinguish the string
e1·e2 unmistakably from the function application e1 e2.2 Note that in a function application
t2 t1, (non-elementary) strings can occur in three places: at the argument position (t1), at
the function position (t2), and at the function body positions.

For a term t = e1· . . . ·en, I say that t has length n. For n = 0 (the empty string of terms),
I write ϵ, to which I refer as nothing; e.g., the function λx . ϵ is said to return nothing. For
terms t1· . . . ·tn (which have the shape of e and hence that of t), I sometimes write

Πn
i=1ti .

Note that e also has the shape of t; an elementary term is a string term with length 1 and
vice versa.

2.2 Operational Semantics
I define small-step operational semantics of my extended LC using a reduction relation −→.
Using this relation, terms t are reduced to values, which can be elementary (u) or strings of
elementary values (v):

v ::= u

u ::= λx . t

According to this grammar, ϵ is a (non-elementary) value. Note that the fact that a term
is elementary does not mean that it reduces to an elementary value; specifically, t2 t1 may
reduce to a non-elementary value. Constraining terms so that they are guaranteed to reduce
to elementary values is achieved by a number system, to be introduced in Section 3.

The rules defining the reduction relation are the following:

[R-Str]
v·t ̸= ϵ e −→ t′

v·e·t −→ v·t′·t
[R-App1]

t2 −→ t′
2

t2 t1 −→ t′
2 t1

[R-App2]
t −→ t′

v t −→ v t′

[R-AppS] (Πn
i=1λx . ti) (Πm

j=1uj) −→ Πn
i=1Πm

j=1[uj/x]ti

[R-AppP] (Πn
i=1λx . ti) v −→ Πn

i=1[v/x]ti

As usual, I write ∗−−→ for the transitive closure of −→. The following is of note:
R-Str, R-App1 and R-App2 are congruence rules [3]: R-Str transforms strings having
lengths greater than 1 to value strings, while R-App1 and R-App2 transform (elementary)
applications to (elementary) applications comprised of value strings. Note that R-App2
means that I rely on call-by-value.

2 Note that · is not an operator of the object language here; rather, it may be read as the concatenation
operator of the metalanguage (and a such as a sibling of substitution).
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For reducing a term v2 v1 (the application of a value string to a value string), the
choice between the computation rules R-AppS and R-AppP is ambiguous. For instance,
(λx . x) u −→ u both by R-AppS and by R-AppP. This ambiguity will be resolved below
(via numbering of terms). Note here that R-AppP substitutes a string for x, whereas
R-AppS substitutes each element of the string separately. For instance,

using R-AppP, (λx . t1)·(λx . t2) u1·u2 −→ [u1·u2/x]t1·[u1·u2/x]t2, while
using R-AppS, (λx . t1)·(λx . t2) u1·u2 −→ [u1/x]t1·[u2/x]t1·[u1/x]t2·[u2/x]t2.

This difference, which parallels that between the the holistic application of sum and the
distributive application of ⊕ from Section 1 and which, in the context of nondeterminism,
has been described as that between plural and singular semantics [4, 7], is perhaps most
prominent when applying a function to ϵ: under singular semantics (R-AppS), application
is strict with respect to ϵ (using R-AppS, (λx . t) ϵ −→ ϵ for every term t), whereas under
plural semantics (R-AppP), it is not generally (using R-AppP, (λx . t) ϵ −→ [ϵ/x]t).
As an immediate consequence of the above, using R-AppP, a function application reduces
to an elementary value if n = 1 (i.e., there is only one function to be applied) and if [v/x]t1
reduces to an elementary value; using R-AppS, the same result additionally requires that
m = 1, i.e., that the argument of the application is elementary, too. This will be reflected
in the numbering of terms as introduced next.

3 Numbering of Terms

Rather than the typing that leads to the simply typed lambda calculus (STLC), I introduce
numbering to abstract from the results of computations, and to specify the well-formedness
of terms.

3.1 Numbers
Rather than types, I introduce numbers η as abstractions of the values terms t reduce to.
Number has two possible instances: !, meaning “length 1” (an elementary value; also referred
to as “exactly one”), and ∗, meaning “any length” (“any number”). To express that the latter
includes the former, I let ! < ∗ and define max on numbers η accordingly: max(η1, . . . , ηn)
equals ∗ if ηi = ∗ for any 1 ≤ i ≤ n, and equals ! otherwise. Numbers are thus numeric
abstractions: they do not abstract from the kind of a value as types do (e.g., integer or
boolean), but from its length. For a term t having number !, one may expect that the value
it reduces to has length 1 (i.e., is elementary); for a term having number ∗, one may expect
that it reduces to a value of any length3.

With numbers in mind, one can easily observe that using R-AppS, the variable x is always
replaced (via substitution) with a value having number ! (an elementary value), whereas
using R-AppP, x is replaced with a value having number ∗ (a value string). Making this
explicit by annotating the variables x of functions λx . t with either

!, to express that only elementary values will be substituted for x, or with
∗, to express that values of arbitrary length may be substituted for x,

disambiguates between the rules R-AppS and R-AppP in the reduction of function applica-
tion: λx! . t v calls for R-AppS while λx∗ . t v calls for R-AppP. Tying the disambiguation
to the syntax of functions rather than that of applications acknowledges that in the context
of multiple arguments (plurals), we may want to distinguish between distributive and holistic

3 Note how this is more than expecting nothing: one may still expect that it reduces to a value!
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treatment, and that this distinction is tied to the function (or operator; e.g., ⊕ vs. sum;
see Section 1), not the application. Note that the same distinction could be achieved by
introducing a second abstraction symbol (such as Λ, complementing λ) for functions and
inferring the number of each variable x from the symbol introducing it; however, my choice
of using number annotations (which will be needed anyway, as shown next) lets my extension
of the LC appear gentler.

3.2 Mapping Constraints and Number Specifiers
It turns out that simple number annotations on variables are not sufficient to infer the
number of the value a term will reduce to: Since functions are values that can be substituted
for the parameters (variables) of other functions, in whose bodies their application may
determine the result of applying the host function, we need to annotate each function (and
the variables for which it may be substituted) with the number of its parameter and that
of the term constituting its body. For this, I introduce number specifiers π defined by the
grammar

π ::= η⟨µ⟩ η ::= ! | ∗ µ ::= □ | µ
η η
⇁µ

where I refer to µ as a mapping constraint (named after the mapping constraints 1:1 and 1:N
from relational database theory). Mapping constraints are defined recursively to account for
higher-order functions; □ terminates the recursion, thereby playing the role of a base type in
the STLC. Like base types, □ demands the existence of values that are not functions, that
is, of constants c: the number specifier ∗⟨□⟩ is thus to be read as “any number of constants”,
!⟨□ ! ∗⇁□⟩ as “one function with singular semantics, mapping one constant to any number of
constants”, and ∗⟨□∗ !⇁□⟩ as “any number of functions with plural semantics, each mapping
any number of constants to one constant”.

Given number specifiers and constants, I extend the syntax of my extended LC further
(changes highlighted):

t ::= e e ::= x | λxπ . t | t t | c

v ::= u u ::= λxπ . t | c

The rules governing reduction of function application are then adapted as follows:

[R-AppP] (Πn
i=1λx∗⟨_⟩ . ti) v −→ Πn

i=1[v/x]ti

[R-AppS] (Πn
i=1λx!⟨_⟩ . ti) (Πm

j=1uj) −→ Πn
i=1Πm

j=1[uj/x]ti

In each rule, the wildcard _ (which is not an element of the object language) in the
number specifier η⟨_⟩ of the formal parameter x stands for a mapping constraint that is
irrelevant for the (selection of the) rule. The number η on the other hand chooses between
singular and plural semantics: if for all functions in a string of functions applied to a
value, η = !, R-AppS applies; if for all functions, η = ∗, R-AppP applies. For instance,
reduction of (λx1∗⟨□⟩ . λx2!⟨□⟩ . x1·x2) u1·u2 u3·u4 must go first through R-AppP, yielding
(λx2!⟨□⟩ . u1·u2·x2) u3·u4, and then through R-AppS, yielding u1·u2·u3·u1·u2·u4.

3.3 The Numbering Relation
Analogous to the typing relation of the STLC [3], I introduce a numbering relation as a
ternary relation on number environments Υ , terms t, and number specifiers π. I write
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Υ ⊢ t # π for an element of this relation and ⊢ t # π if Υ is empty. Here (and analogously to
type environments), a number environment Υ is a mapping from variable names x to number
specifiers π; I write Υ, x 7→ π for Υ extended with the pair x 7→ π.

Membership of Υ ⊢ t # π in the numbering relation is derived by the following numbering
rules (in which _ → _ ; _ is the conditional operator):

[N-Str]
n ̸= 1

(
Υ ⊢ ei # _⟨µ⟩

)n

i=1
Υ ⊢ e1· . . . ·en # ∗⟨µ⟩

[N-Var]
Υ (x) = η⟨µ⟩
Υ ⊢ x # η⟨µ⟩

[N-Fun]
Υ, x 7→ η⟨µ⟩ ⊢ t # η′⟨µ′⟩

Υ ⊢ λxη⟨µ⟩ . t # !⟨µη η′
⇁µ′⟩

[N-App]

Υ ⊢ t1 # η1⟨µ1⟩ Υ ⊢ t2 # η2⟨µ1
η0 η3⇁ µ2⟩

η = max((η0 = ∗ → ! ; η1), η2, η3)
Υ ⊢ t2 t1 # η⟨µ2⟩

[N-Cns] Υ ⊢ c # !⟨□⟩ [N-Sub]
Υ ⊢ t # !⟨µ⟩
Υ ⊢ t # ∗⟨µ⟩

For instance, for concat = λx1∗⟨□⟩ . λx2∗⟨□⟩ . x1·x2, we have

⊢ concat # !⟨□∗ !⇁□∗ ∗⇁□⟩ ⊢ concat c1·c2 # !⟨□∗ ∗⇁□⟩ ⊢ concat c1·c2 c3·c4 # ∗⟨□⟩

and indeed, concat c1·c2 c3·c4 −→ (λx2∗⟨□⟩ . c1·c2·x2) c3·c4 −→ c1·c2·c3·c4.
If ⊢ t # π for some π, I say that t is well-numbered. The following is of note:
By N-Str, ϵ has number ∗; however, its mapping constraint µ remains unspecified (ϵ is
polymorphic in a sense).
In combination with N-Fun, N-Str makes sure that in a string of functions with length
greater 1, all formal parameters x have the same number η (either ! or ∗).
N-App makes the number of the formal parameter x of the applied function(s), η0,
decide (via the choice η0 = ∗ → ! ; η1) whether the number of the argument t1, η1, of
an application t2 t1 affects the number of the result of the application: if η0 = ∗, the
reduction must be through R-AppP, which means that the number of the argument is
insignificant. For instance, ⊢ (λx∗⟨_⟩.c) v # !⟨□⟩, independently of the number of v.
Nothing in N-App enforces that the number of the argument, η1, and the number of
the formal parameter, η0, match. For η0 = !, this is rendered unnecessary by R-AppS,
which substitutes only elementary values for x (hence my choice of call-by-value); for
η0 = ∗, η1 = ! is actually acceptable: an elementary value may always be substituted
for a variable constrained to hold any number (but note how η1 = ! does not propagate
through a function: e.g., ⊢ (λx∗⟨□⟩ . x) c # ∗⟨□⟩ ).
N-Sub makes the number system polymorphic: all terms having number ! also have
number ∗. For number judgements Υ ⊢ t : !⟨µη !

⇁µ′⟩ (derived through N-Fun, i.e., for
functions), this means that we also have Υ ⊢ t : !⟨µη ∗

⇁µ′⟩ and Υ ⊢ t : ∗⟨µη ∗
⇁µ′⟩: functions

“to one” are subsumed by functions “to any”. This gives us well-numbered heterogeneous
function strings, i.e., strings whose elementary functions’ mapping constraints vary
between µ

η !
⇁µ′ and µ

η ∗
⇁µ′.

Last but not least, the number system supports the labelling of well-numbered terms
λx!⟨µ⟩ . t as total functions or relations: if ⊢ λx!⟨µ⟩ . t # !⟨µ ! !⇁_⟩, then we may call
λx!⟨µ⟩ . t a total function (because it maps an elementary value to an elementary value);
if ⊢ λx!⟨µ⟩ . t # !⟨µ ! ∗⇁_⟩, then we may think of λx!⟨µ⟩ . t as a relation (because it may map
an elementary value to any number of elementary values4). Note that by this definition
and by the polymorphism introduced through N-Sub, all total functions are also relations.

4 including the same value more than once, giving us a multi-relation; also, unlike for set-theoretic
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3.4 Number Safety
As for typing, we want to be sure not only that the well-numberedness of a term guarantees
that it can be reduced to a value, but also that the term’s derived number correctly abstracts
from the length of that value. This is expressed by the following theorem:

▶ Theorem 1 (Number Safety). If for a term t and some π, ⊢ t # π and t ∗−−→ t′ and there
is no t′′ so that t′ −→ t′′, then t′ is a value and ⊢ t′ # π.

Proof. The proof, which follows a standard layout (see, e.g., [3]), follows immediately from
corresponding lemmas of progress and preservation, and a substitution lemma. All three
lemmas and their proofs are found in Appendix A. ◀

4 Supporting the Relations Language

While the operational semantics of the relations language relies on (flat) bags for representing
multiple values (see Section 1 and also [1, 2]), the SNLC builds on strings, which are inherently
ordered. This difference, which is owing to the syntactic nature of the LC (and the fact that
syntax is not commutative), affects the equality of multiples, which I did not cover5. Leaving
this fundamental difference aside, the SNLC provides a broad basis for Harkes and Visser’s
relations language.

4.1 Computing with Multiples
The SNLC’s choice of singular and plural semantics of function application supports both
distributing operations over and aggregations of multiple operands, as required by addition
and summing of the relations language. To see this, assume that elementary integer addition,
+, is a primitive of the SNLC whose use is numbered by the rule

[N-Add]
Υ ⊢ t1 # !⟨□⟩ Υ ⊢ t2 # !⟨□⟩

Υ ⊢ t1 + t2 # !⟨□⟩
.

Distributive Application We can then define

⊕ = λx1!⟨□⟩ . λx2!⟨□⟩ . x1 + x2 (with ⊢ ⊕ # !⟨□ ! !⇁□ ! !⇁□⟩)

as the distribution of elementary addition over strings, giving us (in infix notation) 1·2 ⊕
3·4 ∗−−→ 4·5·5·6, which corresponds to {| x1 + x2 | x1 ∈ {| 1, 2 |}, x2 ∈ {| 3, 4 |} |}, the result of
the same addition in the the relations language (see Section 1 and [1, 2]). At the same time,
above definition of ⊕ (in concert with R-AppS on which the reduction of its application
relies) gracefully handles the absence of numbers in the style of an Optional type: e.g.,
1 ⊕ ϵ ∗−−→ ϵ (the strictness of R-AppS on ϵ).

Aggregation As noted in Section 1, aggregation cannot be defined distributively, but
requires holistic treatment of multiples. Rather than offloading this treatment entirely to a
semantic domain (as the definition of the relations language did for its aggregation functions),
we can implement aggregation — with the help of (explicit) state — using a combination of

relations, the values are ordered (but note how both are admissible in some relational database systems,
and may indeed be desirable in certain domains)

5 but note how this problem parallels that of the equality of lambda terms, which is subject to α-equivalence
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functions with plural and singular semantics, where the singular semantics does the necessary
looping. For instance, replacing variable substitution with a mutable variables store and
assuming variable assignment, we can define

sum = (λx0!⟨□⟩ . λx1∗⟨□⟩ . (λx2∗⟨□⟩ . x0) ((λx3!⟨□⟩ . x0 := x0 + x3) x1)) 0
(with ⊢ sum # !⟨□∗ !⇁□⟩)

where applying λx3!⟨□⟩ . x0 := x0+x3 (singular semantics) to x1 lets x3 loop over the elements
of x1 (whose number specifier is ∗⟨□⟩) and which gives us, for instance, sum 1·2 ∗−−→ 3. To
implement aggregation without resorting to state, we would need to introduce recursion and
string deconstruction to the SNLC, which would let strings appear as built-in lists (but see
Section 5 for why they are not).

4.2 Relations and their Navigation

The relations language caters for the declaration and navigation of n-ary, non-updatable
relations. In the SNLC, I model these relations as extensionally specified (tabular) functions,
and their navigation as function application.

Binary Relations To support the representation and navigation of relations as sets of pairs
(rather than computable functions, or λ-abstractions), I extend the SNLC with a new form
of terms,

case t of u : u .

Here, u : u is a string of pairs of elementary values that can be viewed as an extensionally
defined binary relation (or a two-column table), and t is a term that selects from the relation
a string of values, namely the string of right members of pairs whose left members are
matched by t. This behaviour is accomplished by the rules

[R-Case1]
t −→ t′

case t of u : u′ −→ case t′ of u : u′

[R-Case2]
(
vi = (u = ui → u′

i ; ϵ)
)n

i=1
case u of Πn

i=1(ui : u′
i) −→ Πn

i=1vi

reducing a case expression to a string v1· . . . ·vn, of which each vi is either u′
i or ϵ, depending

on whether the left member ui of a pair ui : u′
i equals the selector value u. This reduction

behaviour of case expressions is abstracted by the number rule

[N-Case]
Υ ⊢ t # !⟨µ′⟩

(
Υ ⊢ ui # !⟨µ′⟩

)n

i=1

(
Υ ⊢ u′

i
# !⟨µ⟩

)n

i=1
Υ ⊢ case t of Πn

i=1(ui : u′
i) # ∗⟨µ⟩

,

expressing that
the selector term t needs to reduce to precisely one value whose associated mapping
constraint µ′ must match the mapping constraints of all first places of the pairs, and that
the case expression reduces to a string of arbitrary length, whose elements all share the
same mapping constraint µ (enforced by the third condition of the rule).
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Navigation Given case expressions and their reduction rules, the relations that they capture
can be navigated by abstracting from the selector term and applying the resulting abstraction
(function) to the source of the navigation. For instance, for

children = λx!⟨□⟩ . case x of (c1: c2)·(c3: c4)·(c3: c5) (with ⊢ children # !⟨□ ! ∗⇁□⟩)

we get

children c1
∗−−→ c2 children c2

∗−−→ ϵ

children c3
∗−−→ c4·c5 children c1·c2·c3

∗−−→ c2·c4·c5 .

Note how this corresponds to a navigation expression x.children with x substituted accord-
ingly; in fact, if children is interpreted as the relation (or mapping) {(c1, c2), (c3, c4), (c3, c5)},
then its application to, say, c1·c2·c3 can be interpreted as the direct image of the set {c1, c2, c3}
under that relation. Also, relations can be navigated transitively: with

children = λx!⟨□⟩ . case x of (c1: c2)·(c2: c3) ,

we get

children (children c1) ∗−−→ c3 ,

corresponding to the navigation expression c1.children.children.

Bidirectional Navigation The encoding of relations using abstractions over case expressions
is directed (the relations of the SNLC are mappings). In order to change the direction
of navigation of a relation, or to make relations bidirectional as in the relations language,
one needs to define relations in pairs, one per direction. Since these pairs are symmetric
(one is the permutation of the other), it is straightforward to generate them using suitable
preprocessing of SNLC programs.

Attributes The relations language has not only relations relating objects, but also attributes
describing them. In the SNLC, these attributes are modelled as special relations: if constants c

are divided into objects, o, and attribute values, a, (integers, booleans, etc.), then abstractions
attr of the form λx!⟨□⟩ . case x of o : a associate objects with their attribute values (one
abstraction attr per attribute). For instance, given a definition of the attribute age, we can
write

age (children x) ,

corresponding to the expression x.children.age from Section 1.

Higher-Degree Relations The relations language also caters for ternary and higher-degree
relations. In the SNLC, one can model such relations by nesting (abstracted) case expressions:
for instance,

R = λx1!⟨□⟩ . case x1 of c1:
(
λx2!⟨□⟩ . case x2 of (c2: c3)·(c2: c4)

)
corresponds to a ternary relation {(c1, c2, c3), (c1, c2, c4)}, which is navigated by applying R

to two values in a row: for instance, R c1 c2
∗−−→ c3·c4.
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Higher-Order Relations Given that case expressions correspond to relations, nested case
expressions like those of R above correspond to nested relations, or relations of relations,
which are by definition higher-order.

We can also define higher-order relations computationally. For instance, the definition

hop2 = λx1!⟨□ ! ∗⇁□⟩ . λx2!⟨□⟩ . x1 (x1 x2)

lets us rephrase the above term children (children c1) as hop2 children c1. Assuming a second
relation parents, we can derive both the grandchildren and the grandparents of c1 using
hop2 children·parents c1 (which reduces to (children (children c1))·(parents (parents c1))). If
we wanted to navigate to siblings (children of parents) and spouses (parents of children) of c1
as well, we would need to switch hop2 to plural semantics (so that hop2 children·parents c1
reduced to children·parents (children·parents c1)).

hop2 composes a relation with itself. More generally, one might want to define relation
composition (or relative multiplication) as a higher-order relation

compose = λx1!⟨□ ! ∗⇁□⟩ . λx2!⟨□ ! ∗⇁□⟩ . λx3!⟨□⟩ . x1 (x2 x3) ,

but for compose to be fully general (i.e., applicable to arbitrarily numbered relations), one
would need to adopt parametric number specifiers (in analogy to parametric types).

4.3 More Multiplicities
The relations language features not two, but four different numbers (there called multiplicities):
besides ! and ∗, which are also covered by the SNLC as presented here, it offers ? (for “none
or one”) and + (for “one or more”). While integrating these in the SNLC will require some
extra effort (the proofs will require significantly more case analyses), this effort may be
well-spent: rather than the number η in the derived number specifier of λx!⟨µ⟩ . t, !⟨µ ! η

⇁_⟩,
distinguishing between total functions (η = !) and relations (η = ∗), it qualifies λx!⟨µ⟩ . t as
a relation with properties given by the table

η left-total right-unique classification
? no yes partial function
! yes yes total function
+ yes no relation
∗ no no relation

Furthermore, restricting numbers η to ! and ?, we arrive at a calculus that can distinguish
and handle total and partial functions without needing an Optional type (and a type system
supporting it): for instance, an implementation of subtraction (⊖) may have number specifier
!⟨□ ! !⇁□ ! ?⇁□⟩, indicating that applying it to two arguments evaluates to nothing (ϵ) if the
subtrahend is greater than the minuend. The expression 1 ⊖ 2 ⊕ 3 would then evaluate to ϵ,
without the definition of ⊕ needing to take extra measures for this (it is automatically strict
on ϵ; see Section 4.1).

5 Discussion

One might hold against the SNLC that it makes strings a primitive language construct, where
the plain LC is already expressive enough to cover strings, by giving them the form of lists.
However, like sets and unlike strings, lists have a deep structure (one can have lists of lists)
and indeed, applying a function to a string is not the same as mapping the function over the
corresponding list: for instance (λx!⟨□⟩ . ϵ) c1·c2 reduces to ϵ, a string of length 0, and not to
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a string of length 2, as mapping would do. It appears that at the very least, the flattening
that is implicit in the concatenation of strings would need to be added to function application
somehow. With this in place, however, and assuming a typing discipline without coercions,
one would need to encode everything as a list, if only because the type of a list differs from
that of its elements so that one element cannot stand in for any number, as suggested by
N-Sub and realized by substitution in the SNLC. On the other hand, the SNLC’s lack of
both recursion and deconstruction of strings (analogous to the deconstruction of lists into
their heads and tails) lets aggregation require explicit state, unlike the fold on lists that has
granted functional programming much of its popularity. A more practical language based on
the SNLC will therefore likely feature both, strings and lists (but mind that, being a heir to
the LC, all that the SNLC is lacking to accommodate lists is recursion).

In several extensions of first-order languages with numbers (or multiplicities), type and
number have been observed to be orthogonal (see, e.g., [1, 2, 5, 6]). By adding higher-order
functions, however, it becomes apparent that the number annotations must have a form
that is parallel to that of types: they must introduce “function numbers” η η′

⇁ (here called
mapping constraints) as analogues of function types. To terminate the recursion of mapping
constraints, a single “unary mapping constraint”, or “mapping constraint of a constant” must
be introduced (here □). While this is much like the one base type that is minimally required
by any STLC to be usable [3], in the SNLC, there is actually no use in having more than
one such base. Therefore, the terminal □ can be replaced by syntax for (arbitrarily many)
base types, which equips us for defining a “simply typed and numbered lambda calculus” as a
straightforward merger of the STLC and the SNLC as here presented.

6 Conclusion

By adding strings of terms, I have extended the lambda calculus to a higher-order relational
language in which an elementary function may map an elementary value to zero, one, or
more elementary values. Rather than typing this language, I have numbered it, and have
shown that this gives us guarantees analogous to those of typing, with the edge that the
number system can distinguish between total functions and relations (ordered multi-relations,
to be precise). It turns out that the SNLC serves existing, more complex query languages;
specifically, it serves as a foundation of the relations language of Daco Harkes and the late
Eelco Visser.
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A Proof of Number Safety

▶ Lemma 2 (Progress). If ⊢ ta # πa, then ta is a value or there is some tb so that ta −→ tb.

Proof. By induction on the derivation of ⊢ ta # πa, where the number rules define the cases.
N-Str, ta ≡ e1· . . . ·en where n ≠ 1: If n = 0, ta = ϵ, which is a value. If n > 1 and ta

is not a value, it must have the form vet for some e that is not a value. By inversion
of N-Str, we know that e is well-numbered; since it is not a value, we know by the
induction hypothesis that e reduces, so that by R-Str, vet also reduces, as required.
N-Var, ta ≡ x: Since ta is assumed to be well-numbered (and hence closed), this case
cannot occur.
N-Fun, ta ≡ λxη⟨µ⟩ . t: ta is a value.
N-App, ta ≡ t2 t1: ta is not a value. By inversion of N-App, we have that t2 and t1
are well-numbered. By the induction hypothesis, if t2 is not a value, it reduces, so that
by R-App1, ta also reduces, as required; if t2 is a value but t1 is not, ta reduces by
R-App2; otherwise, we infer from inversion of N-App and inspection of the other number
rules that t2 must be a string of functions (the canonical form of a value having number
_⟨__ _

⇁_⟩). If the string has length 1, either R-AppP or R-AppS applies, so that ta

reduces as required; otherwise, we know from ⊢ t2 # _⟨_η _
⇁_⟩, N-Str, and N-Fun that,

depending on η, t2 must either have the form λx∗⟨µ⟩ . t or λx!⟨µ⟩ . t, so that in this case
also, one of R-AppP and R-AppS applies.
N-Cns, ta ≡ c: ta is a value.
N-Sub: Follows immediately from the induction hypothesis.

This concludes our case analysis. ◀

▶ Lemma 3 (Substitution). If Υ, xa 7→ πa ⊢ ta # πb and ⊢ va # πa, then Υ ⊢ [va/xa]ta # πb.

Proof. We assume the condition and show that the conclusion follows, by induction on the
derivation of Υ, xa 7→ πa ⊢ ta # πb, using a case analysis on the number rules.

N-Str, ta ≡ e1· . . . ·en with n ̸= 1: Let η⟨µ⟩ = πb. We know from N-Str that η = ∗
and that Υ, xa 7→ πa ⊢ ei # _⟨µ⟩ for i = 1..n. The induction hypothesis then gives us Υ ⊢
[va/xa]ei # _⟨µ⟩ for i = 1..n. From this and N-Str, we get Υ ⊢ [va/xa](e1· . . . ·en) # η⟨µ⟩,
as required. Note how this holds for both n = 0 and n > 1.
N-Var, ta ≡ x: We are assuming Υ, xa 7→ πa ⊢ x # πb. If x = xa, then πa = πb (by N-
Var) and [va/xa]x = va, where the required conclusion Υ ⊢ va # πb follows from πa = πb

and, by weakening, from the assumption ⊢ va # πa of the lemma; if x ̸= xa, [va/xa]x = x,
where the required Υ ⊢ x # πb follows from the assumed Υ, xa 7→ πa ⊢ x # πb.
N-Fun, ta ≡ λxη⟨µ⟩ . t where we may assume that x ≠ xa: From the condition
Υ, xa 7→ πa ⊢ ta # πb and N-Fun we get πb = !⟨µη η′

⇁µ′⟩ and Υ, xa 7→ πa, x 7→ η⟨µ⟩ ⊢
t # η′⟨µ′⟩. By the induction hypothesis, we get Υ, x 7→ η⟨µ⟩ ⊢ [va/xa]t # η′⟨µ′⟩ and by
N-Fun, Υ ⊢ λxη⟨µ⟩ . [va/xa]t # πb. Because λxη⟨µ⟩ . [va/xa]t = [va/xa]λxη⟨µ⟩ . t, this is
what we need.

https://doi.org/10.4230/LIPIcs.SNAPL.2015.294
https://doi.org/10.1145/3527635
https://doi.org/10.1145/3567512.3567516
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N-App, ta ≡ t2 t1: We let η⟨µ2⟩ = πb. From the condition Υ, xa 7→ πa ⊢ t2 t1 # η⟨µ2⟩
and its derivation through N-App, we know that Υ, xa 7→ πa ⊢ t1 # η1⟨µ1⟩ for some η1, µ1,
and that Υ, xa 7→ πa ⊢ t2 # η2⟨µ1

η0 η3⇁ µ2⟩ for some η0, η2, η3 such that η = max((η0 =
∗ → ! ; η1), η2, η3). From the induction hypothesis, we get that Υ ⊢ [va/xa]t1 # η1⟨µ1⟩ and
that Υ ⊢ [va/xa]t2 # η2⟨µ1

η0 η3⇁ µ2⟩, and from N-App that Υ ⊢ ([va/xa]t2) ([va/xa]t1) # η⟨µ2⟩
and hence Υ ⊢ [va/xa](t2 t1) # η⟨µ2⟩, as required.
N-Cns, ta ≡ c: immediate.
N-Sub: follows from N-Sub and the induction hypothesis.

This concludes our case analysis. ◀

▶ Lemma 4 (Preservation). If ⊢ ta # ηa⟨µa⟩ and ta −→ tb, then ⊢ tb # ηa⟨µa⟩.

Proof. By induction on the derivation of ⊢ ta # ηa⟨µa⟩, with cases given by the numbering
rules.

N-Str, ta ≡ e1· . . . ·en with n ̸= 1: ta must reduce using R-Str, where ta ≡ vet and
tb ≡ vt′t. Let u1· . . . ·un = v and e1· . . . ·em = t. From the derivation of ⊢ ta # ηa⟨µa⟩
through N-Str we know that ηa = ∗, that ⊢ ui # _⟨µa⟩ for i = 1..n, that ⊢ e # _⟨µa⟩,
and that ⊢ ei # _⟨µa⟩ for i = 1..m. From the induction hypothesis we may assume
that ⊢ t′ # _⟨µa⟩, so that by N-Str, we get ⊢ u1· . . . ·unt′e1· . . . ·em # ∗⟨µa⟩ and thus
⊢ tb # ηa⟨µa⟩, as required.
N-Var, ta ≡ x: There is no reduction rule for variables.
N-Fun, ta ≡ λxη⟨µ⟩ . t: ta is a value.
N-App: We distinguish on the reduction rules by which ta −→ tb can be derived:

R-App1, ta −→ tb ≡ t2 t1 −→ t′
2 t1: By R-App1, t2 −→ t′

2. From ⊢ ta # ηa⟨µa⟩ and
its derivation through N-App we get that ηa = max((η0 = ∗ → ! ; η1), η2, η3), that
⊢ t2 # η2⟨µ1

η0 η3⇁ µa⟩, and that ⊢ t1 # η1⟨µ1⟩ for some η0 through η3 and µ1. By the
induction hypothesis we know that ⊢ t′

2 # η2⟨µ1
η0 η3⇁ µa⟩ so that by N-App, we get

⊢ t′
2 t1 # ηa⟨µa⟩ and hence ⊢ tb # ηa⟨µa⟩, as required.

R-App2, ta −→ tb ≡ v t −→ v t′: This case is analogous to that of R-App1.
R-AppP, ta −→ tb ≡ (Πn

i=1λx∗⟨µ⟩ . ti) v −→ Πn
i=1[v/x]ti: We distinguish on n:

∗ n = 1: In this case, ta ≡ (λx∗⟨µ⟩ . t1) v and tb ≡ [v/x]t1. From ⊢ ta # ηa⟨µa⟩
and its derivation through N-App, we know that for some η0 through η3 and µ1,
⊢ v # η1⟨µ1⟩ and ⊢ λx∗⟨µ⟩ . t1 # η2⟨µ1

η0 η3⇁ µa⟩. From the latter’s derivation through
N-Fun, we know that η0 = ∗, η2 = !, µ1 = µ, and that x 7→ ∗⟨µ1⟩ ⊢ t1 # η3⟨µa⟩.
Given ⊢ v # η1⟨µ1⟩ and the substitution lemma, we get ⊢ [v/x]t1 # η3⟨µa⟩. Since
η0 = ∗ and η2 = ! mean that ηa = max(!, !, η3) = η3, this is what is required.

∗ n > 1: In this case, we must additionally go back and forth through N-Str. First, by
inversion of N-App, we get ⊢ v # η1⟨µ1⟩ as above and ⊢ Πn

i=1λx∗⟨µ⟩ . ti # η2⟨µ1
η0 η3⇁ µa⟩.

From the latter and its necessary derivation through N-Str (n ̸= 1), we can con-
clude that η2 = ∗ and hence, from N-App, that ηa = ∗. By going back through
N-Str, we get

(
⊢ λx∗⟨µ⟩ . ti # _⟨µ1

η0 η3⇁ µa⟩
)n

i=1 which, except for the loss of η2, for
i = 1 is the same as above. From here and for all i = 1..n, we proceed as above
(ignoring η2), giving us

(
⊢ [v/x]t1 # η3⟨µa⟩

)n

i=1. Going forth through N-Str then
gives us the required ⊢ Πn

i=1[v/x]ti # ηa⟨µa⟩.
∗ n = 0: In this case, ta ≡ ϵ v and tb ≡ ϵ. By reasoning analogous to the previous

case, we have that ηa = ∗. Since by N-Str, we can derive ⊢ ϵ # ∗⟨µ⟩ for any µ,
⊢ tb # ηa⟨µa⟩ holds, as required.

R-AppS, ta −→ tb ≡ (Πn
i=1λx!⟨µ⟩ . ti) (Πm

j=1uj) −→ Πn
i=1Πm

j=1[uj/x]ti: This case is
largely analogous to that of R-AppP:
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∗ n = 1: As above, we set i = 1, giving us an elementary function λx!⟨µ⟩ . t1 to
be applied and tb ≡ Πm

j=1[uj/x]t1. By inversion of N-App, we know that for
some η0 through η3 and µ1, ⊢ Πm

j=1uj # η1⟨µ1⟩ and ⊢ λx!⟨µ⟩ . t1 # η2⟨µ1
η0 η3⇁ µa⟩.

From the former’s derivation through N-Str, we know that
(

⊢ uj # _⟨µ1⟩
)m

j=1
and furthermore, through N-Fun and N-Cns,

(
⊢ uj # !⟨µ1⟩

)m

j=1; from the latter’s
derivation through N-Fun, we know that η0 = !, η2 = !, µ = µ1, and that x 7→ !⟨µ1⟩ ⊢
t1 # η3⟨µa⟩. From the substitution lemma, we get

(
⊢ [uj/x]t1 # η3⟨µa⟩

)m

j=1. Now
we distinguish on m:
· m = 1: We get η1 = ! and with η0 = η2 = !, ηa = η3, as required.
· m > 1: We get η1 = ∗ and hence ηa = ∗; from

(
⊢ [uj/x]t1 # η3⟨µa⟩

)m

j=1 and
N-Str, we get ⊢ Πm

j=1[uj/x]t1 # ∗⟨µa⟩, as required.
· m = 0: We get ηa = ∗ as above. Since tb = ϵ and ⊢ ϵ # ∗⟨µ⟩ for any µ, we have

⊢ tb # ∗⟨µa⟩.
∗ n > 1: We combine elements from the case of n = 1 and the above proof for

R-AppP and n > 1. Specifically, we infer that η2 = ηa = ∗ (independently of the
value of m), that

(
⊢ uj # !⟨µ1⟩

)m

j=1, and that
(
x 7→ !⟨µ1⟩ ⊢ ti # η3⟨µa⟩

)n

i=1. From
the substitution lemma, we get

((
⊢ [uj/x]ti # η3⟨µa⟩

)m

j=1

)n

i=1 and hence, through
N-Str, Πn

i=1Πm
j=1[uj/x]ti # ∗⟨µa⟩, as required.

∗ n = 0: as for R-AppP
N-Cns, ta ≡ c: ta is a value.
N-Sub: From the derivation of ⊢ ta # ηa⟨µa⟩ through N-Sub we know that ηa = ∗
and that ⊢ ta # !⟨µa⟩. Assuming that ta −→ tb, we get ⊢ tb # !⟨µa⟩ from the induction
hypothesis and hence ⊢ tb # ∗⟨µa⟩ from N-Sub, which is what we require.

With that, we are finished. ◀
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